Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoelectrochemical Characterization of a Robust TiO2/BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions

Identifieur interne : 000A71 ( Chine/Analysis ); précédent : 000A70; suivant : 000A72

Photoelectrochemical Characterization of a Robust TiO2/BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions

Auteurs : RBID : Pascal:10-0217273

Descripteurs français

English descriptors

Abstract

Titanium dioxide (TiO2) and boron-doped diamond (BDD) are two of the most popular functional materials in recent years. In this work, TiO2 nanoparticles were immobilized onto the BDD electrodes by a dip-coating technique. Continuous and uniform mixed-phase (anatase and rutile) and pure-anatase TiO2/BDD electrodes were obtained after calcination processes at 700 and 450 °C, respectively. The particle sizes of both types of TiO2 film range from 20 to 30 nm. In comparison with a TiO2/indium tin oxide (ITO) electrode, the TiO2/BDD electrode demonstrates a higher photoclectrocatalytic activity toward the oxidation of organic compounds, such as glucose and potassium hydrogen phthalate. Among all the tested TiO2 electrodes, the mixed-phase TiO2/BDD electrode demonstrated the highest photoelectrocatalytic activity, which can be attributed to the formation of the p-n heterojunction between TiO2 and BDD. The electrode was subsequently used to detect a wide spectrum of organic compounds in aqueous solution using a steady-state current method. An excellent linear relationship between the steady-state photocurrents and equivalent organic concentrations was attained. The steady-state oxidation photocurrents of the mixed-phase TiO2/BDD electrode were insensitive to pH in the range of pH 2-10. Furthermore, the electrodes exhibited excellent robustness under strong acidic conditions that the TiO2/ITO electrodes cannot stand. These characteristics bestow the mixed-phaseTiO2/BDD electrode to be a versatile material for the sensing of organic compounds.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0217273

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoelectrochemical Characterization of a Robust TiO
<sub>2</sub>
/BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions</title>
<author>
<name>YANHE HAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Life Science, Liaoning Normal University</s1>
<s2>Dalian 116029</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Dalian 116029</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHANQING ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HUIJUN ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WILLIAM WEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAIMIN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HONGJUAN WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Chemistry and Chemical Engineering, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FENG PENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Chemistry and Chemical Engineering, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Guangzhou 510640</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0217273</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0217273 INIST</idno>
<idno type="RBID">Pascal:10-0217273</idno>
<idno type="wicri:Area/Main/Corpus">004609</idno>
<idno type="wicri:Area/Main/Repository">003B17</idno>
<idno type="wicri:Area/Chine/Extraction">000A71</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anatase</term>
<term>Aqueous solution</term>
<term>Binary compound</term>
<term>Boron</term>
<term>Characterization</term>
<term>Diamond</term>
<term>Dip coating</term>
<term>Electrodes</term>
<term>Film</term>
<term>Glucose</term>
<term>Hydrogen</term>
<term>Indium oxide</term>
<term>Nanoparticle</term>
<term>Organic compounds</term>
<term>Oxidation</term>
<term>Particle size</term>
<term>Potassium</term>
<term>Rutile</term>
<term>Steady state</term>
<term>Tin oxide</term>
<term>Titanium oxide</term>
<term>Transition element compounds</term>
<term>pH</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractérisation</term>
<term>Composé de métal de transition</term>
<term>Oxyde de titane</term>
<term>Composé binaire</term>
<term>Electrode</term>
<term>Solution aqueuse</term>
<term>Bore</term>
<term>Diamant</term>
<term>Nanoparticule</term>
<term>Dépôt immersion</term>
<term>Anatase</term>
<term>Rutile</term>
<term>Dimension particule</term>
<term>Film</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Oxydation</term>
<term>Composé organique</term>
<term>Glucose</term>
<term>Potassium</term>
<term>Hydrogène</term>
<term>Régime permanent</term>
<term>pH</term>
<term>TiO2</term>
<term>O Ti</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Glucose</term>
<term>Potassium</term>
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Titanium dioxide (TiO
<sub>2</sub>
) and boron-doped diamond (BDD) are two of the most popular functional materials in recent years. In this work, TiO
<sub>2</sub>
nanoparticles were immobilized onto the BDD electrodes by a dip-coating technique. Continuous and uniform mixed-phase (anatase and rutile) and pure-anatase TiO
<sub>2</sub>
/BDD electrodes were obtained after calcination processes at 700 and 450 °C, respectively. The particle sizes of both types of TiO
<sub>2</sub>
film range from 20 to 30 nm. In comparison with a TiO
<sub>2</sub>
/indium tin oxide (ITO) electrode, the TiO
<sub>2</sub>
/BDD electrode demonstrates a higher photoclectrocatalytic activity toward the oxidation of organic compounds, such as glucose and potassium hydrogen phthalate. Among all the tested TiO
<sub>2</sub>
electrodes, the mixed-phase TiO
<sub>2</sub>
/BDD electrode demonstrated the highest photoelectrocatalytic activity, which can be attributed to the formation of the p-n heterojunction between TiO
<sub>2</sub>
and BDD. The electrode was subsequently used to detect a wide spectrum of organic compounds in aqueous solution using a steady-state current method. An excellent linear relationship between the steady-state photocurrents and equivalent organic concentrations was attained. The steady-state oxidation photocurrents of the mixed-phase TiO
<sub>2</sub>
/BDD electrode were insensitive to pH in the range of pH 2-10. Furthermore, the electrodes exhibited excellent robustness under strong acidic conditions that the TiO
<sub>2</sub>
/ITO electrodes cannot stand. These characteristics bestow the mixed-phaseTiO
<sub>2</sub>
/BDD electrode to be a versatile material for the sensing of organic compounds.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoelectrochemical Characterization of a Robust TiO
<sub>2</sub>
/BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YANHE HAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHANQING ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HUIJUN ZHAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WILLIAM WEN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HAIMIN ZHANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HONGJUAN WANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FENG PENG</s1>
</fA11>
<fA14 i1="01">
<s1>Griffith School of Environment Gold Coast Campus, Griffith University QLD 4222</s1>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Life Science, Liaoning Normal University</s1>
<s2>Dalian 116029</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Chemistry and Chemical Engineering, South China University of Technology</s1>
<s2>Guangzhou 510640</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>6033-6040</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000180601040990</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>10-0217273</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA99>
<s0>ref. et notes dissem.</s0>
</fA99>
<fC01 i1="01" l="ENG">
<s0>Titanium dioxide (TiO
<sub>2</sub>
) and boron-doped diamond (BDD) are two of the most popular functional materials in recent years. In this work, TiO
<sub>2</sub>
nanoparticles were immobilized onto the BDD electrodes by a dip-coating technique. Continuous and uniform mixed-phase (anatase and rutile) and pure-anatase TiO
<sub>2</sub>
/BDD electrodes were obtained after calcination processes at 700 and 450 °C, respectively. The particle sizes of both types of TiO
<sub>2</sub>
film range from 20 to 30 nm. In comparison with a TiO
<sub>2</sub>
/indium tin oxide (ITO) electrode, the TiO
<sub>2</sub>
/BDD electrode demonstrates a higher photoclectrocatalytic activity toward the oxidation of organic compounds, such as glucose and potassium hydrogen phthalate. Among all the tested TiO
<sub>2</sub>
electrodes, the mixed-phase TiO
<sub>2</sub>
/BDD electrode demonstrated the highest photoelectrocatalytic activity, which can be attributed to the formation of the p-n heterojunction between TiO
<sub>2</sub>
and BDD. The electrode was subsequently used to detect a wide spectrum of organic compounds in aqueous solution using a steady-state current method. An excellent linear relationship between the steady-state photocurrents and equivalent organic concentrations was attained. The steady-state oxidation photocurrents of the mixed-phase TiO
<sub>2</sub>
/BDD electrode were insensitive to pH in the range of pH 2-10. Furthermore, the electrodes exhibited excellent robustness under strong acidic conditions that the TiO
<sub>2</sub>
/ITO electrodes cannot stand. These characteristics bestow the mixed-phaseTiO
<sub>2</sub>
/BDD electrode to be a versatile material for the sensing of organic compounds.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01I</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01J</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Electrode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrodes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Electrodo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Bore</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Boron</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Boro</s0>
<s2>NC</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Diamant</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Diamond</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Diamante</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dépôt immersion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dip coating</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Depósito inmersión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Anatase</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Anatase</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Anatasa</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Rutile</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Rutile</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Rutilo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Film</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Film</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Película</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Composé organique</s0>
<s2>NA</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Organic compounds</s0>
<s2>NA</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Compuesto orgánico</s0>
<s2>NA</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Glucose</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Glucose</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Glucosa</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Potassium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Potassium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Potasio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Hidrógeno</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Régime permanent</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Steady state</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Régimen permanente</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>pH</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>pH</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>pH</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>O Ti</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fN21>
<s1>144</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000A71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0217273
   |texte=   Photoelectrochemical Characterization of a Robust TiO2/BDD Heterojunction Electrode for Sensing Application in Aqueous Solutions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024